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Abstract

We introduce a simple, efficient, low-SAR method for magnetic resonance imaging in the presence of a static field with a permanent,
and possibly large gradient. The technique, which is called slant-slice imaging is essentially a spin-echo imaging sequence except that the
imaging slice is oriented such that the static field gradient can be used in conjunction with applied gradients during readout. Data are
collected for 2D slices. Unlike single point imaging techniques, entire lines of k-space are acquired with each readout. The slant-slice
pulse sequence is used to obtain high quality images, using a clinical scanner to simulate a static field with a large permanent gradient.
The effects of the inhomogeneity are quantified by two parameters m and q, which are useful for assessing the utility of a magnet design
for 3D-MR imaging.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In the standard approach to magnetic resonance imag-
ing one uses a strong static field that is as homogeneous
as possible. Clinical MR imaging magnets are homoge-
neous, within the field of view, to about 1 ppm. In ‘‘open’’
MRI systems, the field homogeneity is somewhat less, but
still in this general range. One can imagine a variety of sit-
uations, where it might be useful to do magnetic resonance
imaging with the object placed in a region of space entirely
unobstructed by the magnet. For example, this would be
useful for intra-operative MRI. In principle, it is possible
to design coils so that this external field is as homogeneous,
in a given region of space, as one would like, see [5]. In gen-
eral, this requires a very large expenditure of power and
complicated, difficult to design arrangements of coils, see
1090-7807/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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[14,15]. Here, we describe an imaging approach which sub-
stantially reduces the requirements for the static field.

The problems of NMR imaging and spectroscopy in
inhomogeneous fields have been considered by a variety
of investigators and various approaches have been
described. Very interesting recent work, using matched
inhomogeneous B0 and B1 fields, shows that it is possible
to obtain well resolved spectra in the presence of fairly
large B0 field inhomogeneities, see [8,13]. The previous
approaches to imaging all rely on single point acquisition
techniques, which use a refocusing pulse for each point
or small group of points measured in k-space, see
[13,1,2,7,6]. Such sequences are generally not well suited
for human imaging. This is because the large amounts of
RF-power deposited by these pulses lead to a high specific
absorption rate, or SAR, which causes unacceptable tissue
heating. Indeed, the FDA and their European counterparts
place strict restrictions on allowable levels of tissue heating,
colloquially referred to as ‘‘SAR limits.’’

What do we mean by ‘‘imaging in an inhomogeneous
static field?’’ Because the local resonance frequency is
determined by the magnitude of the local field, small vari-
ations in iB0i are of much greater importance than small
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variations in the direction of B0. We are imaging in an
inhomogeneous static field if $iB0i has a ‘‘large,’’ time
independent component throughout the imaging experi-
ment. We are not considering the sorts of ‘‘random’’ or
localized inhomogeneities that arise from the physical
properties of the object being imaged, e.g. susceptibility
artifacts. We assume that the function iB0i has no critical
points in the field of view, so that the level sets of iB0i
are smooth, and fit together nicely. We assume that the
static field B0 is sufficiently strong throughout the field-
of-view, that components of fields orthogonal to B0 have
a very small effect on the measurements and can safely be
ignored. In addition to the static field, we assume that we
can generate several auxiliary gradient fields, which we
label generically G. We assume that, at each point, the gra-
dients of GÆB0 span a plane transverse to that of B0 itself.
Heuristically, the principal restrictions on the applicability
of our method are 1. the size of $iB0i should not be too
large as compared to iB0i, and 2. the size of the GÆB0

should not be too small compared to i$iB0ii. These condi-
tions are rather vague, we will make them more quantita-
tive later in the paper.

We present a time and SAR efficient approach for imag-
ing the distribution q(x,y,z) of a single spin population,
using a strongly inhomogeneous static field. In [9] we pres-
ent acquisition techniques that use one or two refocusing
pulses per line in k-space. This paper focuses on refine-
ments of this method for acquiring data that lead to a fairly
standard 2d-reconstruction problem. Because we do not
repeatedly refocus we avoid the problems, described in
[12,1,2], that arise from refocusing in strongly inhomoge-
neous fields. Unlike single point pulse sequences, the tech-
nique involves reading out full lines of k-space, much like
in conventional MRI. By exciting a slanted slice, the
sequence is able to take advantage of the static field gradi-
ent as part of both the slice-select and readout gradients.

Our approach is quite different from the both the view-
angle tilting technique of Cho et al., and his ‘‘fringe field
technique.’’ View-angle tilting is a method for reducing
geometric distortion due to small, localized, unknown vari-
ations in the static field due to, e.g. susceptibility differences
or chemical shifts, see [3]. A gradient in the slice select
direction is added to the read-out gradient, producing a
tilted slice, which, so long as the object is slowly varying
in the slice-select direction, reduces the geometric distor-
tion in the reconstructed image. Cho and Wong’s technique
for imaging in fringe fields also involves the acquisition of
full lines of k-space, see [4]. However, unlike our technique,
the readout direction is in the slab-select (Z) direction,
requiring full phase encoding in the X- and Y-directions.
It is essentially a single-point acquisition technique, unless
a very thick imaging slab is selected, in which case it can be
considered a full 3D imaging sequence. It should be noted,
however, that the selection of such a thick imaging slab in
the presence of a strong permanent gradient is problematic
in terms of RF power deposition. The non-linear Plancher-
el formula for the RF-energy in a selective pulse shows that
RF-energy / b2
0

Z 1

�1
log

2

1þ cos uðf Þ

� �
df ; ð1Þ

where u(f) is the flip angle profile as a function of offset fre-
quency, see [10,16]. Hence, for a rectangular profile with
flip angle /

RF-energy / � log cos
1

2
/

� �
b2

0Df : ð2Þ

Eq. (1) applies universally to all pulses, applied with a con-
stant slice select gradient, even to the frequency modulated
(FM) pulses described in [4], and shows that the total ener-
gy of an RF-pulse is proportional to slab thickness. Hence,
in the presence of a large permanent gradient, limits on
RF-power deposition allow one to either excite a thin slice,
or use a low flip angle. In both cases one incurs a cost in
SNR. Using a thin slice, the Cho–Wong method becomes
essentially a single point acquisition scheme. Because there
is a permanent gradient, at least one refocusing pulse is re-
quired to form an echo, and this is likely to negate the util-
ity of using a low flip angle excitation.

In order to simplify the discussion, we begin by assum-
ing that the static field inhomogeneity is represented by a
gradient field linear in the Z-direction. That is, in the con-
text of a clinical MRI scanner, we imagine that a high-am-
plitude permanent Z-gradient is constantly on throughout
the sequence, and that we have control over the X- and Y-
gradients (but not the Z-gradient). Although this simplified
scenario does not realistically represent a typical inhomo-
geneous static field over a large field of view, it is clear that
our technique works in more general cases as well. The
body of the paper contains a careful discussion of this spe-
cial case. A more mathematical treatment is presented in a
series of appendices.

2. Methods

Let m be the ratio between the maximum strength of the
adjustable gradients (X and Y) and that of the permanent
Z-gradient. In general m 6 1; our technique works best
when m is not too small, say m P 1

6
.

The slant-slice pulse sequence is shown in Fig. 1. As
mentioned in the introduction, we assume that the
sequence is run in the presence of a large permanent gradi-
ent (0,0,gpm), which is used as part of the slice select and
readout gradients. We also assume that we have adjustable
(imaging) gradients in the X- and Y-directions which are
comparable in magnitude to the permanent gradient. The
sequence is essentially a 2D multiple spin-echo sequence
with a slice selective pulse, phase encoding in the Y-direc-
tion, and multiple spin-echo readouts. The X-gradient is
turned on during excitation and acquisition (with opposing
polarities) so that the effective slice select and readout gra-
dients are (lsgpm,0,gpm) and (�lrgpm,0,gpm), respectively,
where lr, ls < m are nonnegative real values representing
the ratios between the applied and permanent gradient field
strengths.



Fig. 1. Slant-slice pulse sequence in the presence of a large permanent gradient. The X-gradient is used along with the permanent gradient during
excitation and acquisition to obtain a 2D image of a slanted slice.
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Fig. 3. Slant-slice imaging with an adjustable gradient of smaller strength
than the permanent gradient, lrls < 1. In this figure Gy would be
orthogonal to the xz-plane.
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If lrls = 1 then the effective slice select and readout gra-
dients are orthogonal to one another, and the pulse
sequence is identical to a conventional 2D-imaging
sequence for a slanted slice. The special case lr = ls = 1
corresponds to a slice oriented at a 45� angle with respect
to the X- and Z-directions, see Fig. 2. When the permanent
gradient is very large, it may not be practical for the mag-
nitude of the applied gradients to match gpm, so we must
consider the case, where lr, ls < 1. In this case, it is still
possible to acquire a 2D image of the slanted slice, see
Fig. 3. As described below, the only limitation is that k-
space is modulated in the readout direction by a decay
function that depends on lr, ls, and slice thickness. A more
complete discussion is given in Appendix B.

2.1. Resolution in the readout direction

The selected slice is slanted according to the parameter
ls, and is associated with the plane orthogonal to
(�ls, 0,1). The readout gradient can be decomposed with
respect to this slanted slice as

ðlrgpm; 0; gpmÞ ¼
lr þ ls

1þ l2
s

ð�gpm; 0; lsgpmÞ

þ 1� lrls

1þ l2
s

ðlsgpm; 0; gpmÞ: ð3Þ
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Fig. 2. Slant-slice imaging with an adjustable gradient of equal strength to
the permanent gradient, lrls = 1. In this figure Gy would be orthogonal to
the xz-plane.
The first term represents the gradient component in the
readout direction (parallel to the slice), while the second
term represents the component in the slice direction
(orthogonal to the slice). We assume, for simplicity, that
the spin density function is constant across the slice, and
that the slice is a perfect rectangular function of thickness
d. In this case, the effect of the second term in Eq. (3) is
to modulate k-space in the readout direction by the decay
function

AdecayðkroÞ ¼ sinc kro

1� lrls

lr þ ls

d
� �

: ð4Þ

Here, kro is the k-space position in the readout direction
(parallel to the slanted slice); it corresponds to the first term
in the RHS of Eq. (3). Note that Eq. (4) has its first zero at

kmax;ro ¼
lr þ ls

1� lrls
d�1; ð5Þ

implying that the best achievable resolution in the readout
direction is a voxel size of

Dxro;min ¼
1� lrls

lr þ ls
d: ð6Þ

The readout bandwidth is given by c lrþlsffiffiffiffiffiffiffiffi
1þl2

s

p gpm. Given that

0 6 lr, ls 6 m 6 1, we see that the attainable voxel size is
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Fig. 4. Images of a pomegranate obtained with a readout gradient of
3 mT/m and permanent gradient strengths varying between 3 and 18 mT/
m. The theoretical resolution is the same for all of these images. The
difference in detail is due the dependence of the slice angle on m, and the
decrease in SNR is due the the decrease in slice thickness (see text).

a b

Fig. 5. Images of a pomegranate obtained with m = 1 and two different
permanent gradient strengths. The theoretical resolution and slice thick-
ness, in mm, is the same for both images.
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minimized by setting lr = ls = m. A more detailed analysis
of this case is presented in Appendix B.

2.2. Signal-to-noise analysis

The SNR efficiency of the slant-slice sequence obeys the
standard rules for conventional spin-echo imaging. Specifi-
cally, the SNR is proportional to the slice thickness d, and
depends on in-plane resolution in the standard manner. Note
that the readout bandwidth is proportional to the size of the
permanent gradient, and could therefore be very high (espe-
cially for lr and ls close to 1). To compensate, the signal can
be refocused and acquired several times within a single repe-
tition (see Fig. 1), just as in standard imaging.

When lr = ls = 1, Eq. (6) shows that there are no restric-
tions on the achievable in-plane resolution. In this case, the
slice thickness d should be made large in order to maximize
SNR, the only constraint being the available, or allowable

RF power. On the other hand, when lr and ls are less than
1, the voxel size in the readout direction is restricted to be
at least a certain multiple of the slice thickness. For example,
if lr = ls = 1/3, then the voxel size in the readout direction
must be at least 4

3
d. This makes it desirable to excite a thin

slice in order to achieve good in-plane resolution. There is
a SNR penalty associated with exciting a thin slice, but this
can be somewhat compensated for by imaging multiple adja-
cent slices, using interleaved multi-slicing, and then averag-
ing the slices together. A more detailed analysis of this case
is presented in Appendix B.2.

3. Results

Fig. 4 (a–d) shows the results of imaging a pomegranate in
a Siemens Sonata 1.5T scanner, using a linear permanent
gradient (simulated by leaving the Z-gradient on throughout
the experiment). For each of these images, the applied slice
select and readout gradient was set to 3 mT/m in the X-direc-
tion. The permanent Z-gradient took the values 3, 6, 12, and
18 mT/m for m values of 1, 1/2 , 1/4 , and 1/6, respectively.
The scan parameters were as follows: TE = 12 ms,
TR = 400 ms, FOV = 256 · 256 mm2, scan time = 102 s.
The theoretical resolution is the same in all four images.
The slice thickness, measured in Hertz, is held fixed across
these images. The thickness, in mm, varies between 5 mm,
when the Z-gradient is 3 mT/m, and 1.16 mm, when the Z-
gradient is 18 mT/m. Hence, as the permanent gradient
increases, the slice thickness in mm diminishes, and this
accounts, in large part, for the decrease in SNR.

For the images in Fig. 5, lr = ls is held constant at 1, the
slice thickness is held fixed at 5 mm, and the theoretical res-
olutions are equal. In Fig. 5a the permanent gradient is
3 mT/m, while in Fig. 5b it is 20 mT/m. The modest
decrease in SNR, evident in the second image, is a result
of the increase in the permanent gradient strength, which,
in turn, increases the receiver bandwidth. No attempt was
made to recover the lost SNR by acquiring multiple spin-
echos.
4. Discussion and conclusion

The principal advantage of our approach is that it
allows a magnet with a substantial permanent gradient
to be used as the main magnet in a MR-imaging device.
Provided that one can generate gradients within the
field-of-view whose strengths are within about an order
of magnitude of the static field inhomogeneity, this can
be accomplished without significantly sacrificing resolu-
tion, acquisition time, or SNR. By using slanted slices
one recovers, in almost its entirety, the formalism used to
describe imaging with a homogeneous static field. In partic-
ular one can use a simple FFT to reconstruct the image,
along with a post-processing step to remove geometric
distortions due to either non-linear gradient fields or to
the slant-slice acquisition. We have demonstrated that this
method produces high quality images, with acquisition
times comparable to what would be used in a standard
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Fig. 6. A schematic of an MR-imaging device showing the main magnet
located below the patient table and RF/gradient coils situated around the
field-of-view, above the main magnet.
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imaging device. Our technique could be used as part of a
‘‘one-sided’’ 3D-MR-imaging system, with the sample lying
to one side of the magnet, see Fig. 6.

The SNR for the slant-slice technique obeys standard for-
mulas for spin-echo imaging, in terms of slice thickness, res-
olution, readout bandwidth, and scan time. The lowered
SNR due to high readout bandwidth can be compensated
by acquiring the same line of k-space multiple times within
a single repetition. A more serious SNR consideration arises
from the relationship between the slice thickness and the res-
olution in the readout direction. When lrls = 1, so that the
excited slice is at a 45� angle to the direction of the permanent
gradient, there is no restriction on the slice thickness (besides
RF power constraints). However, when lrls < 1, the excited
slice must be sufficiently thin to support the desired readout
resolution. The SNR loss due to a thin slice can be somewhat
recovered using a multi-slice and average technique.

Using our approach, one does not need to work against
nature to design magnets with a very homogeneous field
‘‘outside the bore.’’ One can instead solve the easier prob-
lems associated with designing magnets that have fields
with moderate but regular permanent gradients, which
our approach uses to good advantage.
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Appendix A. The general case

In this and the following appendices we give a more
mathematical, and hence quantitative treatment of the
technique introduced above. We also show that the
assumption of linearity is not necessary. The notation in
these appendices diverges somewhat from the usual prac-
tice in the MR-literature. That notation is rooted in the
idea that there is a globally defined ‘‘Z-direction’’ and
rotating reference frame determined by the uniform static
field. As we are not assuming that B0 is uniform, this simple
situation does not pertain.

Let D denote the region occupied by the sample, or
field-of-view (FOV). We let B0 denote the static field. In
the following we assume that we have apparatus capable
of generating fields throughout D of the form aG1 + bG2,
for a, b 2 [�mg,mg]. In our earlier work we called G1, G2

basic gradient fields. One should imagine that we have a
pair of coil sets, which can be placed in the proximity of
D, that, according to the currents applied, generate multi-
ples of G1, and G2. A schematic drawing of such an appa-
ratus is shown in Fig. 6. Let b0 denote B0 evaluated at a
centrally located point in D, so that B0 = b0 + G0. The field
G0 thereby captures the spatial variation in B0. We define
the overall quality q of the main magnet to be

q ¼ inf
fp2FOVg

kB0ðpÞk
krkB0ðpÞkk

: ð7Þ

This ratio, which has the units of length, is a measure of
how far the magnet deviates from homogeneity over the
field-of-view. It is of importance in that it determines
how thick a slice can be excited with a given amount of
RF-power. The fundamental assumptions underlying our
approach to imaging are that

1. The functions

X ¼ G1 � B0; Y ¼ G2 � B0 and Z ¼ kB0k ð8Þ
define a smooth, one-to-one, smoothly invertible map-
ping from D onto a region of 3D Euclidean space topo-
logically equivalent to a cube.

2. The ratio

m ¼ inf
ðx;y;zÞ2D

mgkG1ðx; y; zÞk
kG0ðx; y; zÞk

ð9Þ

is not too small.
3. The quality q cannot be too small.

Assumption 1 is essentially that made in [9]. We show
there that, under this assumption, the presence of a strong
gradient in the static field does not present any impedi-
ment, in principle, to making high resolution, low noise,
artifact free images. Assumptions 2 and 3 are connected
with the practicalities of getting high resolution, high
SNR images while limiting RF-power deposition. The
much more efficient acquisition method described herein
is practicable provided m is not too close to zero. In exper-
iments performed using a conventional scanner, we show
that m P 1/6 is adequate for our method to work.

For a standard clinical magnet, the magnet quality q, is,
in principle, on the order of 105m. As remarked above, the
q value is connected to the available slice thickness for a
given amount of RF-power. To get an idea of the q values
that correspond to imaging with a homogeneous field we
recall that, for a 1.5T magnet, a standard slice select gradi-
ent is on the order of 20 mT/m, which gives q ¼ 75 m. Two
very useful formulæ relating these parameters to standard
imaging parameters are

SNR / qDf Dx

ð1þ m2Þ
1
4
ffiffiffiffiffi
gx
p SAR / b2

0Df ; ð10Þ
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where b0 is the static field strength, Dx the in-slice
resolution, Df the slice thickness in Hertz, and gx is the
‘‘read-out’’ gradient strength. As we shall see q > 0:1m is
adequate for a clinically useful imaging system.

In [9] and also [4], the permanent gradient in B0 alone is
used to define the slice select direction. As described above
we employ the permanent gradient, along with a field of the
form G ss ¼ gs

1G1 þ gs
2G2 to define the slice selection direc-

tion, and a field, Gre, transverse to this direction, but in
the plane spanned by B0 and Gss, as the read-out gradient.
The slices are thus slanted with respect to the gradient in
the static field, see Fig. 2. A third field of the form
Gph ¼ ðgp

1G1 þ gp
2G2Þ is used as a phase encoding gradient.

In the linear case, the measurement is shown to be the Fou-
rier transform of the spin density function, averaged over
lines that are themselves slanted with respect to the normal
to the slice, see Fig. 3.

Appendix B. Analysis in the linear case

We now give formulæ related to the case of linearly
varying gradients described in Section 2. Let us suppose
that b0 = (0,0,b0) and let

G0 ¼ð�; �; gpmzÞ
G1 ¼ð�; �; xÞ and G2 ¼ ð�; �; yÞ: ð11Þ

We use * to denote negligibly small field components,
orthogonal to (0, 0,b0). For this example, we use G0 +
mgpmG1 as the slice select gradient field and G0 � mgpmG1

as the readout gradient field. Multiples of G2 are used for
phase encoding. Assume that a selective pulse with flip an-
gle / is used to excite a slice with profile w(f). Setting t = 0
at the beginning of the signal acquisition in the sequence
shown in Fig. 1, the signal is

SðtÞ ¼
Z

D
sin /qðx; y; zÞw cgpm

mxþ zffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2
p

� �
e�icðs0�tÞgpmðz�mxÞ

� e�iky y dxdydz: ð12Þ

Changing variables in this integral, to a = z + mx and
b = z � mx, gives

SðtÞ ¼
Z

qðb; yÞe�icðs0�tÞgpmbe�iky ydbdy; ð13Þ

where

qðb; yÞ ¼ 1

2m

�
Z

sin /q
a� b

2m
; y;

aþ b
2

� �
w

cgpmaffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2
p
� �

da:

ð14Þ
The function q is a weighted average of q(x,y,z) along the
lines mx + z = constant. Unless m = 1, these lines are not
orthogonal to the selected slice, they are shown in Figs. 2
and 3. In these figures G0 corresponds to Gz and G1 corre-
sponds to Gx; G2 would be orthogonal to the plane of these
figures. The measured signal is the Fourier transform of
qðb; yÞ at frequency (ky,c(s0 � t)gpm).
B.1. Resolution in the linear case

If we can generate an adjustable gradient of strength
equal to that of the permanent gradient, then the pixels
are rectangular and the resolution is determined by the usu-
al heuristic formula

Dx � 1

kmax

: ð15Þ

If the maximum adjustable gradient is smaller than the per-
manent gradient, iG0i, then there is additional averaging in-
volved in signal acquisition. To quantify this effect we make
the following simplifying assumption: the spin density q is
constant along lines parallel to the slice select direction. In-
deed, this is also a ‘‘worst case’’ analysis, when comparing
the slant-slice protocol to a protocol with averaging over
lines orthogonal to the slice, i.e., m = 1. This assumption is
reasonable for thin slices and a slowly varying spin density.
In this case, at least within the excited slice, we have

qðx; zÞ � F
x� mzffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2
p
� �

: ð16Þ

To simplify the analysis, we ignore the third dimension,
which would, in any case be obtained by phase encoding in
a direction orthogonal to the plane spanned by G0 and G1.
The resolution in the phase encode direction is determined,
as in (15), by the maximum frequency sampled. Letting

a ¼ að1� m2Þ
2m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2
p b ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2
p

2m
; ð17Þ

Eqs. (13) and (14) becomes

SðtÞ ¼
Z L

2

�L
2

Z
F ða� bÞ

� 2m
1� m2

� �
w cgpm

2am
1� m2

� �
dae

�2pi 2m
1þm2kðtÞb

dadb;

ð18Þ

where k(t) = cgpm(t � s0)/2p. We see that the measurement
is the Fourier transform, at frequency 2mkðtÞ

1þm2 , of the convolu-
tion of F(a) with the scaled windowing function,
W mðrÞ ¼ 2m

1�m2

� �
w cgpm

2am
1�m2

� �
. Hence

SðtÞ ¼ 1

cg pm

F̂
2m

1þ m2
kðtÞ

� �
ŵ

1� m2

1þ m2

kðtÞ
cgpm

 !
: ð19Þ

The slanted slice has three different effects on the measured
signal

1. It reduces the effective maximum frequency sampled by
a factor of 2m

1þm2, and scales the sample spacing in k-space
by the same factor.

kmax;ro ¼
2m

1þ m2
kmax and Dkro ¼

2m
1þ m2

Dk: ð20Þ

2. It causes blurring due to the convolution with Wm along
the slanted line.
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3. If the angle h between the readout direction and the
selected slice is close to 90�, (m� 1) so that the effect
of the convolution with Wm cannot be removed (see
(22)), then the effective field of view is the support of
Wm*f. If the slice thickness is d, then the support of

f*Wm is the interval � L
2
þ dð1�m2Þ

2m

� �
; L

2
þ dð1�m2Þ

2m

� �h i
.

The effect of the convolution can, in principle, be
removed if the Fourier transform of Wm does not vanish

in the interval � 2m
1þm2 kmax;

2m
1þm2 kmax

h i
: For example, if

wðsÞ ¼ v½�1
2cgd;12cgd�ðsÞ, then,

bW m
2km

1þ m2

� �
¼ 1þ m2

1� m2

� � sin pkd 1�m2

1þm2

� �
pk

; ð21Þ

and the effect of the slant-slice convolution can be
removed, without excessive amplification of the noise, if

kmax <
1

2d
� 1þ m2

1� m2
: ð22Þ

In this case, the resolution is effectively given by
Dx � (1 + m2)(2mkmax)�1. Note that 2p kmax = cNDtg, if
2N + 1 samples are collected. Consequently, the resolution
in the read-out direction is still effectively determined by
gx = mgpm

Dx � p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2
p

cNDtgx
: ð23Þ

Under the constraint imposed by Eqn. (22), (23) shows that
this approach has an effective resolution limit given by

Dxlim � d
1� m2

2m
¼ d

sin h
cos h

; ð24Þ

in agreement with Eq. (6)
If m is close to zero, and kmax does not satisfy (22), then

the smearing effect caused by convolution with Wm cannot
be entirely removed, and the resolution will be lowered.
The effective field of view will also be larger, requiring a
smaller sample spacing in k-space. As noted above, under
these circumstances, it may be necessary to use thin slices,
measured many times. In principle, this would allow the
recovery of any lost resolution, though at the cost of addi-
tional acquisition time, or reduced SNR.

B.2. Dependence of SNR on gradient strength and magnet

quality

We now consider the signal-to-noise ratio attainable
using the procedures described above. The analysis of the
SNR is essentially the same as it would be in a standard
2D-imaging system, see [11]. A priori, it would seem that
a large value of gpm would lead to a very rapid transversal
of k-space and therefore would require a very small Dt. As
observed above, Dk is scaled with m by

Dkro ¼
2m

1þ m2
Dk ¼ cDtgx

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2
p : ð25Þ
Here, 2pDk = cDtg, and gx = mgpm. Thus, if m is close to 0,
then, to get a desired Dkro, determined by the field-of-
view, we need to use a larger Dt, (than would be predicted
by the size of gpm), giving a smaller receiver bandwidth
and longer acquisition time than one would have expect-
ed. So long as (22) is satisfied, the receiver bandwidth is
therefore close to what it would be without the permanent
gradient.

Suppose that we have a slice thickness d and a rectangu-
lar field-of-view of size L. If Dx denotes the (isotropic) in-
slice pixel length, Dt is the acquisition time and we collect
N-samples in each direction. Assuming that the noise
comes primarily from the sample

SNR / b0dDx2N
ffiffiffiffiffi
Dt
p

with Dt /
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2
p

gxL
; ð26Þ

see [11]. Using that L = NDx, and combining the estimates
in (26) we obtain

SNR / b0dDxð1þ m2Þ
1
4

ffiffiffiffiffi
L
gx

s
: ð27Þ

Thus if m = 1, then the SNR is close to what we would ex-
pect using a readout gradient of strength gx. If we fix d,
then, as gpm increases, m tends to zero, and we loose a mod-
est factor of 2

1
4. On the other hand, keeping d fixed as gpm

increases, requires a higher bandwidth excitation and hence
more RF-power.

If the permanent gradient is large, then the lines in k-
space are traversed very quickly. If m � 1, then this leads
to a high receiver bandwidth. In this case the transverse
magnetization can be repeatedly refocused and remea-
sured, regaining the SNR, lost to the factor of

ffiffiffiffiffi
gx
p

in the
denominator of (27). This approach to regaining SNR in
inhomogeneous field imaging appears in the work of Crow-
ley and Rose, though in a somewhat different context, see
[6,7].

In the situation described in Appendix B.1, the magnet
quality q ¼ b0=gpm. Suppose that the excitation bandwidth,
in Hertz, is Df, so that cgpm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2
p

d ¼ Df , then the expres-
sion for the SNR can be rewritten as

SNR / qDf Dx

ð1þ m2Þ
1
4

ffiffiffiffiffi
L
gx

s
: ð28Þ

Thus, for a fixed excitation bandwidth, in Hertz, the SNR
is proportional to the quality of the magnet. If q is small
(compared to a value like 100 m), then the main practical
difficulties in using a static field with a large permanent gra-
dient are connected to available RF-bandwidth and the po-
tential for excessive SAR.

Let P be the available, or allowable, RF-energy. For
moderate field strengths (b0 6 1T) it satisfies P / b2

0Df ,
see Eq. (2). Using this relation and those above, we can
reexpress the SNR, slice thickness and in-plane resolution
in terms of the parameters ðm; q; P ; b0Þ.
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SNR / q
3
2PDx

b
5
2
0

ffiffiffi
m
p
ð1þ m2Þ

1
4

; d / qP

cb3
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2
p

Dx P
qPð1� m2Þ

cb3
0m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2
p : ð29Þ

Given a magnet of quality q and gradients with a given m,
these relations allow for a comprehensive, a priori, assess-
ment of the attainable image quality.

For example, suppose that ðq0; b00; d0;Dx; P Þ are the
parameters, for a high quality clinical system, with
signal-to-noise equal to SNR0. On 1.5T clinical system, a
reasonable slice select gradient strength is 20 mT/m, hence
a reasonable ‘‘reference’’ value for q0 is 75 m. Suppose that,
for a k > 1, we degrade the magnet quality, so that q1 ¼ q0=k.
Keeping Dx, m, and P fixed, suppose that we reduce the static
field strength to b10 ¼ b00=k

5
11. The SNR is then decreased to

SNR0=k
4

11 and the slice thickness and the minimum in-slice
pixel width are increased by k

4
11. If m is close to 1, then the

effect on in-slice pixel width is likely to be negligible. A
calculation shows that, using this approach of splitting
the difference between the SNR and slice thickness, reducing
q by a factor of 100 only reduces the SNR and increases
the slice thickness by a factor of 5.34. In the presence of a
large static gradient, it is tempting to try to use a small
flip angle to get a thicker slice, and hence better SNR. To
obtain an echo, however, at least one refocusing pulse is
needed, which, in the presence of a large gradient and a thick
slice, is likely to require a prohibitively large amount of
RF-power.

We have assumed that the RF-power cannot or may not be
increased. If it can be, then the losses in the previous example
can be significantly ameliorated. It is clear that, given a mag-
net of quality q and a value of m, there are many possible
tradeoffs that can be made amongst SNR, resolution, slice
thickness, imaging time, etc., to obtain an imaging system
using the given hardware. The relations in (29) provide a basis
for doing this analysis and determining whether and how to
use the available hardware in a 3D-MR-imaging system.

Appendix C. Analysis in the non-linear case

We briefly describe the needed modifications in our
analysis, if the gradient generating fields, G0, G1,
G2,3 are not linear but satisfy the conditions enumerated
3 We distinguish between gradient generating fields, which are static, or
quasi-static magnetic fields and field gradients. The field gradient G,
generated by the gradient generating field G, is defined to be

G¼d r G;
B0

kB0k

	 

: ð30Þ

It is the variation of the component of G in the direction of B0. If
iG0i� iB0i and G0 is not too rapidly varying, then we often use the
approximate value

G � r G ;
b0

kb0k

	 

; ð31Þ

for the field gradient, in our computations.
in Appendix A. For simplicity we consider the 2D case,
and the approach using two refocusing pulses. We write
B0 = b0 + G0, where b0 is the uniform field b0 = (0, 0,b0).
Let G denote an adjustable gradient generating field. We
recall that the local Larmor frequency is determined by
iB0 + Gi

kB0 þ Gk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kb0 þ G0 þ Gk2

q
¼ b0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2b0 þ G0 þ G ;G0 þ Gi

b2
0

s

¼ b0 þ
2b0 þ G0 þ G

2b0

;G0 þ G

	 

þ O

1

b0

1þ kG0 þ Gk2

b2
0

" # !
: ð32Þ

This equation shows that the validity of the assumption
that, for the purposes of analyzing the MR-signal, the gra-
dient generating fields can be replaced by their projections
onto b0, is equivalent to the assumption that

kG0 þ Gk � b0: ð33Þ
This assumption pertains throughout the calculations that
follow.

Modifying the notation in the linear case, we let

g0 ¼
b0

b0

;G0

	 

; g1 ¼

b0

b0

;G1

	 

: ð34Þ

In case the gradients are strongly non-linear, no real simpli-
fication results from using the field gradients, Gj = $gj, so
we work directly with the functions

ðg0ðx; zÞ; g1ðx; zÞÞ:
Our assumptions on the fields G0, G1 imply that g0, g1 de-
fine coordinates within the FOV and therefore $g0, $g1 are
linearly independent at every point within this region.

As shown in [9], provided the direction of B0 does not
vary too much within the field-of-view, the selective excita-
tion step proceeds very much as in the uniform case. After
the sample becomes polarized in the static field B0, we turn
on the field G1 and expose the sample to a selective RF-
pulse. If w(s) is the slice profile, then the magnetization at
the conclusion of the RF-pulse is

mð00Þ ¼ sin /qðx; zÞwðcðg0 þ g1ÞÞeis0cðg0þg1Þ: ð35Þ
The transverse component is non-zero in the non-linear re-
gion of space where we have

wðcðg0ðx; zÞ þ g1ðx; zÞÞÞ 6¼ 0: ð36Þ
After a refocusing pulse, we have

mð10Þ ¼ sin /qðx; zÞwðcðg0 þ g1ÞÞe�is0cðg0þg1Þ: ð37Þ
The field G1 is turned off and the magnetization is allowed to
freely precess for 2s0 time units and is again refocused giving

mð20Þ ¼ sin /qðx; zÞwðcðg0 þ g1ÞÞe�is0cðg0�g1Þ: ð38Þ
Finally, at t = 0, the field �G1 is again turned on to obtain
the measured signal
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Fig. 7. Figure showing level sets of G0 + G1 (circular arcs) and G0 � G1

(hyperbolas). A slice is a region between two circular arcs and the slice
averaging is along the hyperbolas. Near to x = z the pixels are nearly
rectilinear, but are less so near the axes. A typical pixel is shaded.
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SðtÞ ¼
Z

D
sin /qðx; zÞwðcðg0 þ g1ÞÞeiðt�s0Þcðg0�g1Þ dxdz: ð39Þ

Now we use the basic assumptions, which imply that,

jA ¼ g0 þ g1; jB ¼ g0 � g1; ð40Þ
define coordinates throughout the region of space occupied
by the object, D, and define a map onto a region D 0 of R2

topologically equivalent to a square. Let dxdz = j2J(A,B)-
dAdB, the constant coefficient j is used to normalize so that
j2J � 1 near the ‘‘center’’ of the slice. The signal equation
becomes

SðtÞ ¼ j2 sin /

�
Z

D
qðxðA;BÞ; zðA;BÞÞwðcjAÞe�iðs0�tÞcjBJðA;BÞdAdB:

ð41Þ

For each fixed B, A ´ (x(A,B), z(A,B)) traces a smooth
curve in the xz-plane which is, in some sense, transverse
to the slice. This is, of course just the curve

j�1ðg0ðx; zÞ � g1ðx; zÞÞ ¼ B:

We rewrite the signal as a 1D Fourier transform of the slice
averaged function

qðBÞ ¼ j2

Z
qðxðA;BÞ; zðA;BÞÞwðcjAÞJðA;BÞdA; ð42Þ

so that

SðtÞ ¼ sin /
Z

D
qðBÞe�iðs0�tÞcjB dB: ð43Þ

The measurements are then samples of the Fourier trans-
form of q. Using the IFFT, we can reconstruct samples
of q as a function of B. To reconstruct q in the slice defined
by

�Df 6 j�1cðg0ðx; zÞ þ g1ðx; zÞÞ 6 Df ;

we only need to invert the relations in Eq. (40) to solve for
(x,z) as functions of (A,B). Using the computation of
J(A,B), we can also rescale the data according to the local
pixel density. These steps are possible, at least numerically,
if one knows the functions g0(x,z), g1(x,z). For concrete-
ness we consider an example: let g0 = z2, g1 = x2. The func-
tions A, B define coordinates in the half plane x > 0:
A = z2 + x2, B = z2 � x2. The image of the positive quad-
rant is the region where A > jBj. The area forms are related
by the equation

dxdz ¼ dAdB

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2
p : ð44Þ

Fig. 7 shows level lines of A and B is this quadrant. The
function q is given by

qðBÞ ¼
Z Df

Df
wðcAÞq

ffiffiffiffiffiffiffiffiffiffiffiffi
A� B

2

r
;

ffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B

2

r !
dA

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2
p : ð45Þ
From examination of Fig. 7, it is evident that the simple
notions of pixel and resolution, which are used with linear
gradients, are not especially meaningful in the strongly
non-linear case. Indeed it is evident that resolution in
the reconstructed image, when transformed back to phys-
ical coordinates, is unlikely to be either isotropic at most
points in the image plane, or homogeneous across the
image.

Adding a third dimension is straightforward, given that
we can generate two adjustable gradients G1, G2 so that the
projections in the B0-direction,

g0ðx; y; zÞ; g1ðx; y; zÞ; g2ðx; y; zÞ
define a smooth invertible mapping from the field of view
to a region in R3 topologically equivalent to a cube. A field
of the form G0 + G1 can be used for slice selection, multi-
ples of G2 can be used to phase encode, and G0 � G1 can
be used as a read-out gradient. As explained in [9], the mea-
surements obtained in this way can be interpreted, after a
change of physical (x-space) coordinates, as Fourier the
transform of non-linear averages, of non-linear 2D slices
of q.
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